Researchers Engineer Liquid Crystals

1

Nina Welding | March 16, 2018

Liquid crystals are perhaps most well known for their use in electronic displays, but many biological molecules, such as those in cell membranes are forms of liquid crystals, as are some detergents and clays. What is unique about liquid crystals is that they exhibit properties of both liquids and solids. A liquid crystal may flow like a liquid but be more ordered in its molecular structure, where each molecule is aligned with others in the phase.

Since resistance to misalignment, which is characterized by a set of “elastic coefficients,” is a key component of liquid crystals, researchers have long been attempting to measure and understand this property so that it could be used not only in the display industry, but also in other applications, including the detection of harmful agents and “soft robotics.”

Researchers have been able to measure some of the coefficients which control liquid crystal behavior. Other coefficients, such as the “saddle-splay” deformation (see featured picture), have been impossible to measure directly. Recent experiments have suggested that saddle-splay elasticity could play an important role in better understanding and controlling liquid crystal materials. However, that requires direct and accurate measurements.

New simulation protocols developed by a team of researchers at the University of Notre Dame and the University of Chicago enable the accurate measurement of the elastic coefficients which control the behavior of liquid crystal systems. More importantly, these new protocols resolve the question of saddle-splay instability in 5CB, the most common experimentally studied liquid crystal. Their study, titled “In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals” and highlighted in the March 9, 2018, issue of Physical Review Letters, is the first step in being able to better understand and control the properties of liquid crystals.

Read more here.

Originally published by Daily Domer Staff at dailydomer.nd.edu on March 16, 2018.